December 12, 2024
Technology

A scoping review on advancements in noninvasive wearable technology for heart failure management


  • Disease, G. B. D., Injury, I. & Prevalence, C. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1789–1858 (2018).


    Google Scholar
     

  • Savarese, G. et al. Global burden of heart failure: a comprehensive and updated review of epidemiology. Cardiovasc. Res. 118, 3272–3287 (2023).

    PubMed 

    Google Scholar
     

  • Jordan-Rios, A. et al. Reshaping care in the aftermath of the pandemic. Implications for cardiology health systems. Eur. J. Intern. Med. 109, 4–11 (2023).

    PubMed 

    Google Scholar
     

  • Scholte, N. T. B. et al. Telemonitoring for heart failure: a meta-analysis. Eur. Heart J. 44, 2911–2926 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sharif, F. et al. Twelve-month follow-up results from the SIRONA 2 clinical trial. ESC Heart Fail 11, 1133–1143 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Clephas, P. R. D. et al. Efficacy of pulmonary artery pressure monitoring in patients with chronic heart failure: a meta-analysis of three randomized controlled trials. Eur. Heart J. 44, 3658–3668 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koehler, F. & Hindricks, G. Is telemonitoring for heart failure ready after a journey longer than two decades? Eur. Heart J. 44, 2927–2929 (2023).

    PubMed 

    Google Scholar
     

  • McDonagh, T. A. et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 42, 3599–3726 (2021).

    PubMed 

    Google Scholar
     

  • Wearable Computing Devices Market – Growth, Trends, COVID-19 Impact, and Forecasts https://www.researchandmarkets.com/reports/4787502/wearable-computing-devices-market-growth (2021–2026).

  • Jensen, M. T. et al. ESC working group on e-cardiology position paper: use of commercially available wearable technology for heart rate and activity tracking in primary and secondary cardiovascular prevention-in collaboration with the European Heart Rhythm Association, European Association of Preventive Cardiology, Association of Cardiovascular Nursing and Allied Professionals, Patient Forum, and the Digital Health Committee. Eur. Heart J. Digit Health 2, 49–59 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Manninger, M. et al. Role of wearable rhythm recordings in clinical decision making-The wEHRAbles project. Clin. Cardiol. 43, 1032–1039 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ravizza, A. et al. Comprehensive review on current and future regulatory requirements on wearable sensors in preclinical and clinical testing. Front Bioeng. Biotechnol. 7, 313 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Jiang, N., Muck, J. E. & Yetisen, A. K. The regulation of wearable medical devices. Trends Biotechnol. 38, 129–133 (2020).

    PubMed 

    Google Scholar
     

  • Seva, R. R., Tan, A. L. S., Tejero, L. M. S. & Salvacion, M. L. D. S. Multi-dimensional readiness assessment of medical devices. Theor. Issues Erg. Sci. 24, 189–205 (2023).


    Google Scholar
     

  • Aamodt, I. T. et al. Self-care monitoring of heart failure symptoms and lung impedance at home following hospital discharge: longitudinal study. J. Med. Internet Res. 22, e15445 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alosco, M. L. et al. Decreased physical activity predicts cognitive dysfunction and reduced cerebral blood flow in heart failure. J. Neurol. Sci. 339, 169–175 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alosco, M. L. et al. Decreases in daily physical activity predict acute decline in attention and executive function in heart failure. J. Card. Fail. 21, 339–346 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alosco, M. L. et al. Depression is associated with reduced physical activity in persons with heart failure. Health Psychol. 31, 754–762 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Alvarez-Garcia, J. et al. Remote dielectric sensing before and after discharge in patients with ADHF: the ReDS-SAFE HF trial. JACC Heart Fail 12, 695–706 (2024).

    PubMed 

    Google Scholar
     

  • Amir, O. et al. Evaluation of remote dielectric sensing (ReDS) technology-guided therapy for decreasing heart failure re-hospitalizations. Int. J. Cardiol. 240, 279–284 (2017).

    PubMed 

    Google Scholar
     

  • Baril, J. F. et al. Use of free-living step count monitoring for heart failure functional classification: validation study. JMIR Cardio 3, e12122 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bensimhon, D. et al. The use of the Reds noninvasive lung fluid monitoring system to assess readiness for discharge in patients hospitalized with acute heart failure: a pilot study. Heart Lung 50, 59–64 (2021).

    PubMed 

    Google Scholar
     

  • Blockhaus, C. et al. Telemonitoring potential of wearable cardioverter-defibrillators during the follow-up of patients with heart failure. J. Cardiovasc. Dev. Dis. 9, 175 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Blomqvist, A., Bäck, M., Klompstra, L., Strömberg, A. & Jaarsma, T. Utility of single-item questions to assess physical inactivity in patients with chronic heart failure. ESC Heart Fail 7, 1467–1476 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Braun, T. et al. Association between heart failure severity and mobility in geriatric patients: an in-clinic study with wearable sensors. J. Geriatr. Cardiol. 19, 660–674 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Burch, A. E. et al. Wearable cardioverter defibrillator-guided 6-min walk test performed at home is accurate and reliable: RESULTS OF THE TRENDS STUDY. J. Cardiopulm. Rehabil. Prev. 40, E14–E17 (2020).

    PubMed 

    Google Scholar
     

  • Burkhoff, D., Bailey, G. & Gimbel, J. R. Characterization of cardiac acoustic biomarkers in patients with heart failure. Ann. Noninvasive Electrocardiol. 25, e12717 (2020).

    PubMed 

    Google Scholar
     

  • Butler, J. et al. Accelerometer vs. other activity measures in heart failure with preserved ejection fraction: the VITALITY-HFpEF trial. ESC Heart Fail 11, 293–298 (2024).

    PubMed 

    Google Scholar
     

  • Curtain, J. P. et al. Measuring congestion with a non-invasive monitoring device in heart failure and haemodialysis: CONGEST-HF. Eur. J. Heart Fail 26, 1383–1392 (2024).

    PubMed 

    Google Scholar
     

  • da Silva, V. Z. et al. Association between physical activity measurements and key parameters of cardiopulmonary exercise testing in patients with heart failure. J. Card. Fail 19, 635–640 (2013).

    PubMed 

    Google Scholar
     

  • Dagan, M. et al. Advanced hemodynamic monitoring allows recognition of early response patterns to diuresis in congestive heart failure patients. J. Clin. Med 12, 45 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Darling, C. E. et al. Bioimpedance-based heart failure deterioration prediction using a prototype fluid accumulation vest-mobile phone dyad: an observational study. JMIR Cardio 1, e1 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Deka, P., Pozehl, B., Norman, J. F. & Khazanchi, D. Feasibility of using the Fitbit(®) Charge HR in validating self-reported exercise diaries in a community setting in patients with heart failure. Eur. J. Cardiovasc Nurs. 17, 605–611 (2018).

    PubMed 

    Google Scholar
     

  • Di Rienzo, M., Rizzo, G., Işılay, Z. M. & Lombardi, P. SeisMote: a multi-sensor wireless platform for cardiovascular monitoring in laboratory, daily life, and telemedicine. Sensors 20, 680 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dibben, G. O. et al. Physical activity assessment by accelerometry in people with heart failure. BMC Sports Sci. Med Rehabil. 12, 47 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dibben, G. O. et al. Home-based cardiac rehabilitation and physical activity in people with heart failure: a secondary analysis of the REACH-HF randomised controlled trials. BMJ Open 13, e063284 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Dontje, M. L. et al. Daily physical activity in stable heart failure patients. J. Cardiovasc. Nurs. 29, 218–226 (2014).

    PubMed 

    Google Scholar
     

  • Dorsch, M. P., Farris, K. B., Rowell, B. E., Hummel, S. L. & Koelling, T. M. The effects of the ManageHF4Life mobile app on patients with chronic heart failure: randomized controlled trial. JMIR Mhealth Uhealth 9, e26185 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Edwards, M. K. & Loprinzi, P. D. Sedentary behavior & health-related quality of life among congestive heart failure patients. Int. J. Cardiol. 220, 520–523 (2016).

    PubMed 

    Google Scholar
     

  • Erath, J. W. et al. Influence of decompensated heart failure on cardiac acoustic biomarkers: impact on early readmissions. ESC Heart Fail 7, 4198–4205 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Evangelista, L. S. et al. Validity of pedometers for measuring exercise adherence in heart failure patients. J. Card. Fail 11, 366–371 (2005).

    PubMed 

    Google Scholar
     

  • Floegel, T. A., Allen, K. D. & Buman, M. P. A pilot study examining activity monitor use in older adults with heart failure during and after hospitalization. Geriatr. Nurs. 40, 185–189 (2019).

    PubMed 

    Google Scholar
     

  • Floegel, T. A. et al. Association of posture and ambulation with function 30 days after hospital discharge in older adults with heart failure. J. Card. Fail 24, 126–130 (2018).

    PubMed 

    Google Scholar
     

  • Fulcher, K. K. et al. Greater physical activity is associated with better cognitive function in heart failure. Health Psychol. 33, 1337–1343 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garcia, R. et al. Dynamic changes in nocturnal heart rate predict short-term cardiovascular events in patients using the wearable cardioverter-defibrillator: from the WEARIT-France cohort study. Europace 25, euad062 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gardner, C. L. et al. Electronic physiologic and subjective data acquisition in home-dwelling heart failure patients: an assessment of patient use and perception of usability. Int. J. Med Inform. 93, 42–48 (2016).

    PubMed 

    Google Scholar
     

  • German, C. A. et al. Relationships between objectively measured physical activity, exercise capacity, and quality of life in older patients with obese heart failure and preserved ejection fraction. J. Card. Fail 27, 635–641 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Güder, G. et al. Establishing a cardiac training group for patients with heart failure: the “HIP-in-Würzburg” study. Clin. Res. Cardiol. 111, 406–415 (2022).

    PubMed 

    Google Scholar
     

  • Guo, X. et al. A hospital-community-family-based telehealth program for patients with chronic heart failure: single-arm, prospective feasibility study. JMIR Mhealth Uhealth 7, e13229 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Herkert, C., Kraal, J. J., van Loon, E. M. A., van Hooff, M. & Kemps, H. M. C. Usefulness of modern activity trackers for monitoring exercise behavior in chronic cardiac patients: validation study. JMIR Mhealth Uhealth 7, e15045 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hillmann, H. A. K. et al. Feasibility and first results of heart failure monitoring using the wearable cardioverter-defibrillator in newly diagnosed heart failure with reduced ejection fraction. Sensors 21, 7798 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holber, J. P. et al. The relationship between objectively measured step count, clinical characteristics, and quality of life among depressed patients recently hospitalized with systolic heart failure. Psychosom. Med. 84, 231–236 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Howie-Esquivel, J. & Zaharias, E. Using novel technology to determine mobility among hospitalized heart failure patients: a pilot study. Cardiol. Res. 4, 15–25 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iliodromitis, K. et al. Assessing physical activity with the wearable cardioverter defibrillator in patients with newly diagnosed heart failure. Front Cardiovasc. Med. 10, 1176710 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Inan, O. T. et al. Novel wearable seismocardiography and machine learning algorithms can assess clinical status of heart failure patients. Circ. Heart Fail 11, e004313 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iqbal, S. M., Leavitt, M. A., Pedilus, G., Mahgoub, I. & Asghar, W. A wearable telehealth system for the monitoring of parameters related to heart failure. Heliyon 10, e26841 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Iqbal, S. M. A., Mahgoub, I., Du, E., Leavitt, M. A. & Asghar, W. Development of a wearable belt with integrated sensors for measuring multiple physiological parameters related to heart failure. Sci. Rep. 12, 20264 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Izawa, K. P. et al. Usefulness of step counts to predict mortality in Japanese patients with heart failure. Am. J. Cardiol. 111, 1767–1771 (2013).

    PubMed 

    Google Scholar
     

  • Izawa, K. P. et al. Association between mental health and physical activity in patients with chronic heart failure. Disabil. Rehabil. 36, 250–254 (2014).

    PubMed 

    Google Scholar
     

  • Jehn, M. et al. Tele-accelerometry as a novel technique for assessing functional status in patients with heart failure: feasibility, reliability and patient safety. Int. J. Cardiol. 168, 4723–4728 (2013).

    PubMed 

    Google Scholar
     

  • Jehn, M. et al. Accelerometer-based quantification of 6-minute walk test performance in patients with chronic heart failure: applicability in telemedicine. J. Card. Fail 15, 334–340 (2009).

    PubMed 

    Google Scholar
     

  • Jungbauer, C. G., Maier, L. S., Emoto, K., Zirille, F. M. & Mirro, M. J. Achieving guideline-directed heart rate controlearly posthospitalization. Am. J. Cardiol. 123, 1096–1100 (2019).

    PubMed 

    Google Scholar
     

  • Kaneko, T. et al. Relationship between cardiac acoustic biomarkers and pulmonary artery pressure in patients with heart failure. J. Clin. Med. 11, 6373 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kikuchi, A. et al. Feasibility of home-based cardiac rehabilitation using an integrated telerehabilitation platform in elderly patients with heart failure: a pilot study. J. Cardiol. 78, 66–71 (2021).

    PubMed 

    Google Scholar
     

  • Klompstra, L. et al. Objectively measured physical activity in patients with heart failure: a sub-analysis from the HF-Wii study. Eur. J. Cardiovasc. Nurs. 21, 499–508 (2022).

    PubMed 

    Google Scholar
     

  • Klompstra, L., Jaarsma, T. & Strömberg, A. Exergaming to increase the exercise capacity and daily physical activity in heart failure patients: a pilot study. BMC Geriatr. 14, 119 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Koivisto, T. et al. Mechanocardiography-based measurement system indicating changes in heart failure patients during hospital admission and discharge. Sensors 22, 9781 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lala, A. et al. Early use of remote dielectric sensing after hospitalization to reduce heart failure readmissions. ESC Heart Fail 8, 1047–1054 (2021).

    PubMed 

    Google Scholar
     

  • Li, P. et al. Objective assessment of daytime napping and incident heart failure in 1140 community-dwelling older adults: a prospective, observational cohort study. J. Am. Heart Assoc. 10, e019037 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, X. C. et al. Evaluation of left ventricular systolic function using synchronized analysis of heart sounds and the electrocardiogram. Heart Rhythm 17, 876–880 (2020).

    PubMed 

    Google Scholar
     

  • Lin, H. et al. Clinical and demographic correlates of accelerometer-measured physical activity in participants enrolled in the OPTIMISE HFpEF study. Eur. J. Cardiovasc. Nurs. 21, 67–75 (2022).

    PubMed 

    Google Scholar
     

  • Lin, W. Y. et al. Realization and technology acceptance test of a wearable cardiac health monitoring and early warning system with multi-channel MCGs and ECG. Sensors 18, 3538 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • McCarthy, M. M., Dickson, V. V., Katz, S. D. & Chyun, D. A. An exercise counseling intervention in minority adults with heart failure. Rehabil. Nurs. 42, 146–156 (2017).

    PubMed 

    Google Scholar
     

  • Melczer, C., Melczer, L., Goják, I., Oláh, A. & Ács, P. A comparative analysis between external accelerometer and internal accelerometer’s physical activity data from implanted resynchronization devices in patients with heart failure. Eur. J. Integr. Med 8, 18–22 (2016).


    Google Scholar
     

  • Melin, M., Hagerman, I., Gonon, A., Gustafsson, T. & Rullman, E. Variability in physical activity assessed with accelerometer is an independent predictor of mortality in CHF patients. PLoS One 11, e0153036 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Miyahara, S. et al. Postdischarge light-intensity physical activity predicts rehospitalization of older Japanese patients with heart failure. J. Cardiopulm. Rehabil. Prev. 38, 182–186 (2018).

    PubMed 

    Google Scholar
     

  • Mlakar, M. et al. Mining telemonitored physiological data and patient-reported outcomes of congestive heart failure patients. PLoS One 13, e0190323 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nagatomi, Y. et al. Home-based cardiac rehabilitation using information and communication technology for heart failure patients with frailty. ESC Heart Fail 9, 2407–2418 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nelson, M. B. et al. Physical activity and relationship to physical function, quality of life, and cognitive function in older patients with acute decompensated heart failure. Am. Heart J. 256, 85–94 (2023).

    PubMed 

    Google Scholar
     

  • O’Donnell, J. et al. Self-reported and objectively measured physical activity in people with and without chronic heart failure: UK Biobank analysis. Open Heart 7, e001099 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Okwose, N. C. et al. Acceptability, feasibility and preliminary evaluation of a novel, personalised, home-based physical activity intervention for chronic heart failure (Active-at-Home-HF): a pilot study. Sports Med. Open 5, 45 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Omar, M. et al. Hemodynamic determinants of activity measured by accelerometer in patients with stable heart failure. JACC Heart Fail. 9, 824–835 (2021).

    PubMed 

    Google Scholar
     

  • Pan, X. et al. Deep cross-modal feature learning applied to predict acutely decompensated heart failure using in-home collected electrocardiography and transthoracic bioimpedance. Artif. Intell. Med 140, 102548 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Polcz, M. et al. Comparison of clinical symptoms and bioimpedance to pulmonary capillary wedge pressure in heart failure. Am. Heart J. 15, 100133 (2022).


    Google Scholar
     

  • Pozehl, B. J. et al. Accelerometer-measured daily activity levels and related factors in patients with heart failure. J. Cardiovasc Nurs. 33, 329–335 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Prescher, S. et al. Prognostic value of serial six-minute walk tests using tele-accelerometry in patients with chronic heart failure: A pre-specified sub-study of the TIM-HF-Trial. Eur. J. Prev. Cardiol. 23, 21–26 (2016).

    PubMed 

    Google Scholar
     

  • Radhakrishnan, K. et al. Usability testing of a sensor-controlled digital game to engage older adults with heart failure in physical activity and weight monitoring. Appl. Clin. Inf. 11, 873–881 (2020).


    Google Scholar
     

  • Röger, S. et al. Therapy optimization in patients with heart failure: the role of the wearable cardioverter-defibrillator in a real-world setting. BMC Cardiovasc. Disord. 18, 52 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rullman, E. et al. Circulatory factors associated with function and prognosis in patients with severe heart failure. Clin. Res. Cardiol. 109, 655–672 (2020).

    PubMed 

    Google Scholar
     

  • Sanchez-Perez, J. A. et al. A wearable multimodal sensing system for tracking changes in pulmonary fluid status, lung sounds, and respiratory markers. Sensors (Basel) 22, 1130 (2022).

    PubMed 

    Google Scholar
     

  • Savoldelli, A., Vitali, A., Remuzzi, A. & Giudici, V. Improving the user experience of televisits and telemonitoring for heart failure patients in less than 6 months: a methodological approach. Int. J. Med Inf. 161, 104717 (2022).


    Google Scholar
     

  • Schmidt, C. et al. Comparison of questionnaire and accelerometer-based assessments of physical activity in patients with heart failure with preserved ejection fraction: clinical and prognostic implications. Scand. Cardiovasc. J. 54, 77–83 (2020).

    PubMed 

    Google Scholar
     

  • Schwendinger, F., Wagner, J., Infanger, D., Schmidt-Trucksäss, A. & Knaier, R. Methodological aspects for accelerometer-based assessment of physical activity in heart failure and health. BMC Med. Res. Methodol. 21, 251 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shandhi, M. M. H. et al. Wearable patch-based estimation of oxygen uptake and assessment of clinical status during cardiopulmonary exercise testing in patients with heart failure. J. Card. Fail 26, 948–958 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shen, H. et al. Impaired chronotropic response to physical activities in heart failure patients. BMC Cardiovasc. Disord. 17, 136 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shiraishi, Y. et al. Assessment of physical activity using waist-worn accelerometers in hospitalized heart failure patients and its relationship with Kansas City cardiomyopathy questionnaire. J. Clin. Med 10, 4103 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shoemaker, M. J., Curtis, A. B., Vangsnes, E. & Dickinson, M. G. Clinically meaningful change estimates for the six-minute walk test and daily activity in individuals with chronic heart failure. Cardiopulm Phys. Ther. J. 24, 21–29 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Smeets, C. J. P. et al. The added value of in-hospital tracking of the efficacy of decongestion therapy and prognostic value of a wearable thoracic impedance sensor in acutely decompensated heart failure with volume overload: prospective cohort study. JMIR Cardio 4, e12141 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Snipelisky, D. et al. Accelerometer-measured daily activity in heart failure with preserved ejection fraction: clinical correlates and association with standard heart failure severity indices. Circ. Heart Fail 10, e003878 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sohn, A. et al. Integrating remote monitoring into heart failure patients’ care regimen: a pilot study. PLoS One 15, e0242210 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solar, H. et al. A non invasive, wearable sensor platform for multi-parametric remote monitoring in CHF patients. Health Technol. 3, 99–109 (2013).


    Google Scholar
     

  • Stehlik, J. et al. Continuous wearable monitoring analytics predict heart failure hospitalization: the LINK-HF multicenter study. Circ. Heart Fail. 13, e006513 (2020).

    PubMed 

    Google Scholar
     

  • Ueno, Y., Imamura, T., Narang, N. & Kinugawa, K. Chronotype of lung fluid levels in patients with chronic heart failure. J. Clin. Med. 11, 2714 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • van den Berg-Emons, H. R., Bussmann, J. H., Balk, A., Keijzer-Oster, D. & Stam, H. Level of activities associated with mobility during everyday life in patients with chronic congestive heart failure as measured with an “activity monitor. Phys. Ther. 81, 1502–1511 (2001).

    PubMed 

    Google Scholar
     

  • van den Berg-Emons, R. J., Bussmann, J. B., Balk, A. H. & Stam, H. J. Factors associated with the level of movement-related everyday activity and quality of life in people with chronic heart failure. Phys. Ther. 85, 1340–1348 (2005).

    PubMed 

    Google Scholar
     

  • Vetrovsky, T. et al. The detrimental effect of COVID-19 nationwide quarantine on accelerometer-assessed physical activity of heart failure patients. ESC Heart Fail 7, 2093–2097 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vetrovsky, T. et al. Lifestyle walking intervention for patients with heart failure with reduced ejection fraction: the WATCHFUL Trial. Circulation 149, 177–188 (2024).

    PubMed 

    Google Scholar
     

  • Vetrovsky, T. et al. Validity of six consumer-level activity monitors for measuring steps in patients with chronic heart failure. PLoS One 14, e0222569 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Waring, T., Gross, K., Soucier, R. & ZuWallack, R. Measured physical activity and 30-day rehospitalization in heart failure patients. J. Cardiopulm. Rehabil. Prev. 37, 124–129 (2017).

    PubMed 

    Google Scholar
     

  • Witham, M. D., Argo, I. S., Johnston, D. W., Struthers, A. D. & McMurdo, M. E. Predictors of exercise capacity and everyday activity in older heart failure patients. Eur. J. Heart Fail 8, 203–207 (2006).

    PubMed 

    Google Scholar
     

  • Wong, C. K. et al. Daily ambulatory remote monitoring system for drug escalation in chronic heart failure with reduced ejection fraction: pilot phase of DAVID-HF study. Eur. Heart J. Digit Health 3, 284–295 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yates, B. C., Pozehl, B., Kupzyk, K., Epstein, C. M. & Deka, P. Are heart failure and coronary artery bypass surgery patients meeting physical activity guidelines? Rehabil. Nurs. 42, 119–124 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Young, L., Hertzog, M. & Barnason, S. Feasibility of using accelerometer measurements to assess habitual physical activity in rural heart failure patients. Geriatrics 2, 23 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Vestergaard, A. S., Hansen, L., Sorensen, S. S., Jensen, M. B. & Ehlers, L. H. Is telehealthcare for heart failure patients cost-effective? An economic evaluation alongside the Danish TeleCare North heart failure trial. BMJ Open 10, e031670 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lim, F. Y. et al. Correlation of the New York Heart Association classification and the cardiopulmonary exercise test: a systematic review. Int J. Cardiol. 263, 88–93 (2018).

    PubMed 

    Google Scholar
     

  • Maric, B., Kaan, A., Ignaszewski, A. & Lear, S. A. A systematic review of telemonitoring technologies in heart failure. Eur. J. Heart Fail 11, 506–517 (2009).

    PubMed 

    Google Scholar
     

  • Almeida Junior, G. L., Xavier, S. S., Garcia, M. I. & Clausell, N. Hemodynamic assessment in heart failure: role of physical examination and noninvasive methods. Arq. Bras. Cardiol. 98, e15–e21 (2012).

  • Anderson, K. M. et al. Perceived symptoms as the primary indicators for 30-day heart failure readmission. PLoS One 17, e0267820 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Scholte, N. T. B. et al. Photoplethysmography and intracardiac pressures: early insights from a pilot study. Eur. Heart J. Digit Health 5, 379–383 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Smeden, M. et al. Critical appraisal of artificial intelligence-based prediction models for cardiovascular disease. Eur. Heart J. 43, 2921–2930 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gill, S. K. et al. Artificial intelligence to enhance clinical value across the spectrum of cardiovascular healthcare. Eur. Heart J. 44, 713–725 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kumar, S. et al. Wearables in cardiovascular disease. J. Cardiovasc Transl. Res 16, 557–568 (2023).

    PubMed 

    Google Scholar
     

  • General Wellness: Policy for Low Risk Devices Guidance for Industry and Food and Drug Administration Staff Department: U.S. Department of Health and Human Services Food and Drug Administration Center for Devices and Radiological Health. (ed U.S. Department of Health and Human Services Food and Drug Administration Center for Devices and Radiological Health) FDA-2014-N-1039 (2019) https://www.fda.gov/media/90652/download.

  • Bianchini, E. & Mayer, C. C. Medical device regulation: should we care about it? Artery Res. 28, 55–60 (2022).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bayoumy, K. et al. Smart wearable devices in cardiovascular care: where we are and how to move forward. Nat. Rev. Cardiol. 18, 581–599 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Musa, S. M. et al. Paucity of health data in Africa: an obstacle to digital health implementation and evidence-based practice. Public Health Rev. 44, 1605821 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • DeVore, A. D., Fudim, M. & Lund, L. H. Novel trial designs in heart failure: using digital health tools to increase pragmatism. Curr. Heart Fail Rep. 21, 5–10 (2024).

    PubMed 

    Google Scholar
     

  • Inan, O. T. et al. Digitizing clinical trials. NPJ Digit Med. 3, 101 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, E. W. J. & Viswanath, K. Big data in context: addressing the twin perils of data absenteeism and chauvinism in the context of health disparities research. J. Med Internet Res. 22, e16377 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Holmes Fee, C. et al. Strategies and solutions to address Digital Determinants of Health (DDOH) across underinvested communities. PLOS Digit Health 2, e0000314 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bruining, N. et al. Acquisition and analysis of cardiovascular signals on smartphones: potential, pitfalls and perspectives: by the Task Force of the e-Cardiology Working Group of European Society of Cardiology. Eur. J. Prev. Cardiol. 21, 4–13 (2014).

    PubMed 

    Google Scholar
     

  • Haynes, N. et al. “Can you see my screen?” Addressing racial and ethnic disparities in telehealth. Curr. Cardiovasc Risk Rep. 15, 23 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • van Kessel, R. et al. Digital health reimbursement strategies of 8 European countries and Israel: scoping review and policy mapping. JMIR Mhealth Uhealth 11, e49003 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, J., Campbell, A. S., de Avila, B. E. & Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37, 389–406 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Naseri Jahfari, A., Tax, D., Reinders, M. & van der Bilt, I. Machine learning for cardiovascular outcomes from wearable data: systematic review from a technology readiness level point of view. JMIR Med Inf. 10, e29434 (2022).


    Google Scholar
     

  • Cohen, I. G. & Mello, M. M. Big data, big tech, and protecting patient privacy. JAMA 322, 1141–1142 (2019).

    PubMed 

    Google Scholar
     

  • Page, M. J. et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372, n71 (2021).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • AccessGUDID, https://accessgudid.nlm.nih.gov/devices/search.

  • Devices/SPPs – EUDAMED https://ec.europa.eu/tools/eudamed/#/screen/search-device.



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *